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Abstract. Recently (see [11]) R.A.C. Ferreira, D.F.M. Torres proved some
linear and nonlinear Wendroff type inequalities on time scales. Similar results

were proved also by D.R. Anderson ([2] and [3]). It is well known (see [9])
that the Wendroff inequality is not the best possible upper estimate for the
solutions of the integral inequality. The aim of our paper is to improve the
known Wendroff type inequalities on time scales and to give a different proof
for the existing inequalities. This improvement is motivated also by the work
of A. Abdeldaim and M. Yakout (see [1] and [5]). The method we use is based
on a variant of the abstract comparison Gronwall lemma (see [18], [15]) and
on the theory of Picard operators ([16]).

1. Introduction

1.1. Time scale analysis. The time scale calculus was founded by Stefan Hilger
in his PhD thesis (see [12]) as a unification of the classical real analysis, the q-
calculus and the theory of difference equations. Since then this theory has been
extensively studied in order to obtain a better understanding and a unified view-
point of mathematical phenomenons occurring in the theory of difference equations
and in the theory of differential equations. For an excellent introduction to the
calculus on time scales and to the theory of dynamic equations on time scales we
recommend the books [7] and [8] by M. Bohner and A. Peterson. Throughout the
paper we use the basic notations from these books.

1.1.1. Wendroff type inequalities on time scales. In what follows we assume that
T1 and T2 are time scales with at least two points and we consider the time scale
intervals T̃1 = [a1,∞)∩ T1 and T̃2 = [a2,∞) ∩T2, for a1 ∈ T1 and a2 ∈ T2. Let us

denote D = T̃1× T̃2. We also use the notation R
+
0 = [0,∞) and N0 = N∪{0}, while

ep(t, s) denotes the usual exponential function on time scales with p ∈ R, where p
is a regressive function (see [7]). In [11] the authors obtained the following results:

Theorem 1.1. (Theorem 2.1. in [11]) Let u(t1, t2), w(t1, t2), a(t1, t2) ∈ C(D,R+
0 )

with w(t1, t2) nondecreasing in each of its variables. If

(1.1) u(t1, t2) ≤ w(t1, t2) +

∫ t1

a1

∫ t2

a2

a(s1, s2)u(s1, s2)∆1s1∆2s2,
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for (t1, t2) ∈ D, then

(1.2) u(t1, t2) ≤ w(t1, t2)e∫ t2
a2

a(t1,s2)∆2s2
(t1, a1), (t1, t2) ∈ D.

Theorem 1.2. (Theorem 2.2. in [11]) Let u(t1, t2), w(t1, t2), a(t1, t2) ∈ C(D,R+
0 ),

with w(t1, t2) and a(t1, t2) nondecreasing in each of the variables and g(t1, t2, s1, s2) ∈
C(S,R+

0 ), where S = {(t1, t2, s1, s2) ∈ D×D : a1 ≤ s1 ≤ t1, a2 ≤ s2 ≤ t2} and g is
nondecreasing in the first two variables. If u satisfies the condition

(1.3) u(t1, t2) ≤ w(t1, t2) + a(t1, t2)

∫ t1

a1

∫ t2

a2

g(t1, t2, s1, s2)u(s1, s2)∆1s1∆2s2,

for (t1, t2) ∈ D, then

(1.4) u(t1, t2) ≤ w(t1, t2)e∫ t2
a2

a(t1,t2)g(t1,t2,t1,s2)∆2s2
(t1, a1), ∀(t1, t2) ∈ D.

In what follows we improve (1.2) and (1.4). The improved versions imply also
improved bounds in the nonlinear cases (see theorem 3.1 and 3.2 in [11]). Applying
the same technique we can obtain new (and simple) proofs for the previous theorems
too.

1.2. Picard operators. The Picard operator technique was applied by many au-
thors to study some functional nonlinear integral equations, see for example [4],
[15], [16], [17]. We use the terminologies and notations from [15], [16], [17].

Let (X,→) be an L-space ([16]), A : X → X an operator. We denote by FA the
fixed points of A. We also denote A0 := 1X , A1 := A, . . . , An+1 := An ◦ A, n ∈ N

the iterate operators of the operator A.

Definition 1.3 ([15], [16], [17]). A is a Picard operator (briefly PO), if there exists
x∗

A ∈ X such that:
(i) FA = {x∗

A};
(ii) An(x) → x∗

A as n → ∞, ∀x ∈ X.

In the following we recall two abstract Gronwall lemmas.

Lemma 1.4. ([15], [16])(Abstract Gronwall lemma) Let (X,→,≤) be an ordered
L-space and A : X → X an operator. We assume that:

(i) A is PO;
(ii) A is increasing.
If we denote by x∗

A the unique fixed point of A, then:
(a) x ≤ A(x) ⇒ x ≤ x∗

A;
(b) x ≥ A(x) ⇒ x ≥ x∗

A.

Lemma 1.5. ([15], [16])(Abstract Gronwall-comparison lemma) Let (X,→,≤) be
an ordered L-space and A1, A2 : X → X be two operators. We assume that:

(i) A1 is increasing;
(ii) A1 and A2 are POs;
(iii) A1 ≤ A2.
If we denote by x∗

2 the unique fixed point of A2, then

x ≤ A1(x) ⇒ x ≤ x∗

2.

These lemmas are very powerful because once we prove that the operator is
Picard operator and we have an L-space structure, the Gronwall type inequalities
can be proved without any additional effort (calculation). In many Gronwall type
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inequalities the upper bound of the solution is the solution of the corresponding
fixed point equation. These can be proved using lemma 1.4. This is not the case
of the Wendroff type inequalities, where the upper bound is not the solution of the
corresponding fixed point equation (see [9]). To handle these cases lemma 1.5 can
be used (see [18]). The main difficulty in using lemma 1.5 is the construction of the
operator A2. To avoid this we propose the following variant:

Lemma 1.6. (Abstract Gronwall lemma) Let (X,→,≤) be an orderd L-space and
A : X → X be an operator with the following properties:

(i) A is increasing;
(ii) A is PO;
(iii) there exists x with the property Ax ≤ x.
If for some x ∈ X we have x ≤ Ax, then x ≤ x.

Proof. A is increasing, so the inequality x ≤ Ax implies x ≤ Anx, ∀n ∈ N. Due to
the Picard property of the operator A this implies x ≤ x∗, where x∗ is the unique
solution of the operator A. On the other hand the inequality Ax ≤ x implies
Anx ≤ x and so x∗ ≤ x, which completes the proof. �

Remark 1.7. If the conditions of lemma 1.4 or 1.5 are satisfied, than the conditions
of lemma 1.6 are also satisfied. From this viewpoint lemma 1.6 is more general than
lemma 1.4 and lemma 1.5. We have to mention that in many cases the inequality
Ax ≤ x can be established by using the operator A2 with the properties A ≤ A2

and A2x = x. Our result from theorem 3.2 can not be proved with this technique
because the operator A2 for which A2x = x does not satisfy A ≤ A2. This motivates
the necessity of lemma 1.6.

2. Preliminary results

In this section we extend the metric introduced by C.C. Tisdell and A. Zaidi in
[19] to functions with several variables. This allows us to prove that our operators
are Picard operators, in fact they are contractions if we use a well chosen metric.
Suppose that α, β > 0 are real constants and define the functionals
(2.1)
dα,β : C([a1, σ1(b1)]T1×[a2, σ2(b2)]T2 ,R

n)×C([a1, σ1(b1)]T1×[a2, σ2(b2)]T2 ,R
n)) → R

by

(2.2) dα,β = sup
s1∈[a1,σ1(b1)]T1
s2∈[a2,σ2(b2)]T2

‖u(s1, s2)− v(s1, s2)‖

eα(s1, a1) · eβ(s2, a2)

for all u, v ∈ C([a1, σ1(b1)]T1 × [a2, σ2(b2)]T2 ,R
n) and

(2.3) ‖ · ‖α,β : C([a1, σ1(b1)]T1 × [a2, σ2(b2)]T2 ,R
n) → R

(2.4) ‖u‖α,β = sup
s1∈[a1,σ1(b1)]T1
s2∈[a2,σ2(b2)]T2

‖u(s1, s2)‖

eα(s1, a1) · eβ(s2, a2)

for all u ∈ C([a1, σ1(b1)]T1 × [a2, σ2(b2)]T2 ,R
n), where ‖ · ‖ : Rn → R is a norm on

R
n.

Lemma 2.1. If α, β > 0, and σ1(b1) < ∞, σ2(b2) < ∞, we have the following
properties:
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(1) dα,β is a metric on C([a1, σ1(b1)]T1 × [a2, σ2(b2)]T2 ,R
n);

(2) C([a1, σ1(b1)]T1 × [a2, σ2(b2)]T2 ,R
n) is a complete metric space with dα,β ;

(3) ‖·‖α,β is a norm on C([a1, σ1(b1)]T1×[a2, σ2(b2)]T2 ,R
n) and it is equivalent

to ‖ · ‖0,0.
(4) C([a1, σ1(b1)]T1 × [a2, σ2(b2)]T2 ,R

n, ‖ · ‖α,β) is a Banach space.

The proof of this lemma is quite straightforward, so we omit it. For the simplicity
of notations in what follows we denote C([a1, σ1(b1)]T1 × [a2, σ2(b2)]T2 ,R) by X.
Using this Bielecki type (or ”TZ”) metric, we prove the following properties:

Theorem 2.2. If w, a ∈ X, σ1(b1) < ∞, σ2(b2) < ∞, the operator A1 : X → X
defined by

(2.5) A1(u)(t1, t2) = w(t1, t2) +

∫ t1

a1

∫ t2

a2

a(s1, s2)u(s1, s2)∆1s1∆2s2,

is well defined and there exist α, β > 0 such that A1 is a contraction on (X, dα,β).

Theorem 2.3. If w, a ∈ X, g is continuous, σ1(b1) < ∞, σ2(b2) < ∞, the operator
A2 : X → X defined by

(2.6) A2(u)(t1, t2) = w(t1, t2)+a(t1, t2)

∫ t1

a1

∫ t2

a2

g(t1, t2, s1, s2)u(s1, s2)∆1s1∆2s2,

is well defined and there exist α, β > 0 such that A2 is a contraction on (X, dα,β).

Proof of theorem 2.2. Denote by M the maximum of a(s1, s2) if s1 ∈ [a1, σ1(b1)]T1

and s2 ∈ [a2, σ2(b2)]T2 . Due to the given conditions M exists and M < ∞.

|A1(u)(t1, t2)−A1(v)(t1, t2)| ≤

∫ t1

a1

∫ t2

a2

|a(s1, s2)||u(s1, s2)− v(s1, s2)|∆1s1∆2s2

≤M

∫ t1

a1

∫ t2

a2

|u(s1, s2)− v(s1, s2)|

eα(s1, a1)eβ(s2, a2)
eα(s1, a1)eβ(s2, a2)∆1s1∆2s2

≤M‖u− v‖α,β

∫ t1

a1

∫ t2

a2

eα(s1, a1)eβ(s2, a2)∆1s1∆2s2

≤
M

αβ
‖u− v‖α,βeα(t1, a1)eβ(t2, a2).

The last inequality implies

(2.7) ‖A1(u)−A1(v)‖α,β ≤
M

αβ
‖u− v‖α,β,

so A1 is a contraction on X if αβ > M. �

Remark 2.4. The proof of theorem 2.3 can be done in a similar way by using the
maximum of g on ([a1, σ1(b1)]T1 × [a2, σ2(b2)]T2)

2.

Remark 2.5. We can obtain the contractive property of a more general nonlinear
operator A3 : X → X defined by

A3(u)(t1, t2) = w(t1, t2) + a(t1, t2)

∫ t1

a1

∫ t2

a2

f(t1, t2, s1, s2, u(s1, s2))∆1s1∆2s2,

where f is continuous and has the Lipschitz property in the last variable.
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Remark 2.6. Due to theorem 2.2 and 2.3 the operators A1 and A2 are Picard
operators.

In the calculations we need the following two properties:

Lemma 2.7. If f is continuous and is continuously ∆ differentiable with respect
to t, then the function

U(t) =

∫ t

a

f(s, t)∆s

admits a ∆ derivative with respect to t and

U∆(t) =

∫ t

a

∂f

∆t
(s, t)∆s+ f(t, t).

Lemma 2.8. If f : E → R is a continuous function, where

E = {(s, t) ∈ T1 × T2|a ≤ t < b, a ≤ s < t},

then the function g : [a, b) → R, defined by

g(t) =

∫ t

a

f(s, t)∆1s

is ∆ integrable on [a, b) and we have
∫ b

a

∫ t

a

f(s, t)∆1s∆2t =

∫ b

a

∫ b

σ(s)

f(s, t)∆2t∆1s.

Remark 2.9. If f : E → R is a continuous function, where

E = {(t1, t2, s1, s2) ∈ (T1 × T2)
2|a1 ≤ s1 < t1, a2 ≤ s2 < t2},

then the function g : [a1, t1)× [a2, t2) → R, defined by

g(s1, s2) =

∫ s1

a1

∫ s2

a2

f(t1, t2, ξ1, ξ2)∆1ξ1∆2ξ2

is ∆ integrable on [a1, t1)× [a2, t2) and we have
∫ t1

a1

∫ t2

a2

g(s1, s2)∆1s1∆2s2 =

=

∫ t1

a1

∫ t2

a2

∫ t1

σ1(s1)

∫ t2

σ2(s2)

f(ξ1, ξ2, s1, s2)∆1ξ1∆2ξ2∆1s1∆2s2.

3. Main results

3.1. Linear inequalities. In this section we give new estimates for u and we prove
that these are better than (1.2), (1.4). We need the following lemma

Lemma 3.1. For the function V : E → R, defined by

V (t1, t2, s1, s2) = e t2∫

s2

a(t1,ξ2)∆2ξ2

(t1, s1),

where
E = {(t1, t2, s1, s2) ∈ (T1 × T2)

2|a1 ≤ s1 < t1, a2 ≤ s2 < t2}

we have

(3.1) a(s1, s2)V (t1, t2, σ1(s1), σ2(s2)) ≤
∂2V

∆1s1∆2s2
(t1, t2, s1, s2).
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and

(3.2) a(t1, t2)V (t1, t2, s1, s2) ≤
∂2V

∆1t1∆2t2
(t1, t2, s1, s2).

Proof. The function V is ∆1 differentiable with respect to s1 and we have

∂V

∆1s1
(t1, t2, s1, s2) = −

t2
∫

s2

a(s1, ξ2)∆2ξ2 · V (t1, t2, σ1(s1), s2).

Moreover the function ∂V
∆1s1

is ∆2 differentiable and we have

∂2V

∆1s1∆2s2
(t1, t2, s1, s2) =

t2
∫

s2

a(s1, ξ2)∆2ξ2

t1
∫

σ1(s1)

a(ξ1, s2)∆1ξ1·V (t1, t2, σ1(s1), σ(s2))+

+a(s1, s2)V (t1, t2, σ1(s1), σ2(s2)).

Since the function a is nonnegative we obtain

a(s1, s2)V (t1, t2, σ1(s1), σ2(s2)) ≤
∂2V

∆1s1∆2s2
(t1, t2, s1, s2).

Using a similar argument we have

∂V

∆1t1
(t1, t2, s1, s2) =

t2
∫

s2

a(t1, ξ2)∆2ξ2 · V (t1, t2, s1, s2).

The function ∂V
∆1t1

is ∆2 differentiable with respect to t2 and we have

∂2V

∆1t1∆2t2
(t1, t2, s1, s2) =

σ2(t2)
∫

s2

a(t1, ξ2)∆2ξ2

t1
∫

s1

a(ξ1, t2)∆1ξ1 · V (t1, t2, s1, s2)+

+a(t1, t2)V (t1, t2, s1, s2).

Since the function a is nonnegative we obtain

a(t1, t2)V (t1, t2, s1, s2) ≤
∂2V

∆1t1∆2t2
(t1, t2, s1, s2).

�

Theorem 3.2. Let u(t1, t2), w(t1, t2), a(t1, t2) ∈ C(D,R+
0 ) with w(t1, t2) nonde-

creasing in each of its variables. If u(t1, t2) satisfies

(3.3) u(t1, t2) ≤ w(t1, t2) +

t1
∫

a1

t2
∫

a2

a(s1, s2)u(s1, s2)∆1s1∆2s2,

for (t1, t2) ∈ D, then
(3.4)

u(t1, t2) ≤ w(t1, t2) +

t1
∫

a1

t2
∫

a2

a(s1, s2)w(s1, s2)e∫ t2
σ2(s2)

a(t1,η)∆2η
(t1, σ1(s1))∆1s1∆2s2,

for (t1, t2) ∈ D, where σ1 and σ2 are the jump operators on T1 respectively T2.
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Proof. The integral operator A : C(D) → C(D) defined by

(3.5) A(u)(t1, t2) = w(t1, t2) +

∫ t1

a1

∫ t2

a2

a(s1, s2)u(s1, s2)∆1s1∆2s2,

is a Picard operator (due to theorem 2.2). Moreover the space (C(D), ‖ · ‖) is an
ordered Banach space with the natural ordering

u ≤ v ⇔ u(t1, t2) ≤ v(t1, t2), ∀(t1, t2) ∈ D

and the operator A is an increasing operator, so the inequality u ≤ Au implies
u ≤ u∗, where u∗ is the unique solution of the equation Au = u. On the other hand
it is easy to check that the unique fixed point of A is not the function

u(t1, t2) = w(t1, t2)+

∫ t1

a1

∫ t2

a2

a(s1, s2)w(s1, s2)e∫ t2
σ2(s2)

a(t1,η)∆2η
(t1, σ1(s1))∆1s1∆2s2,

so by lemma 1.6 we need to prove Au ≤ u. Using the function V from lemma 3.1
it is sufficient to prove

(3.6)

t1
∫

a1

t2
∫

a2

a(s1, s2)w(s1, s2)∆1s1∆2s2+

(3.7)

+

t1
∫

a1

t2
∫

a2

s1
∫

a1

s2
∫

a2

a(s1, s2)a(ξ1, ξ2)w(ξ1, ξ2)V (s1, s2, σ1(ξ1), σ2(ξ2))∆1ξ1∆2ξ2∆1s1∆2s2 ≤

(3.8) ≤

t1
∫

a1

t2
∫

a2

a(s1, s2)w(s1, s2)V (t1, t2, σ1(s1), σ2(s2))∆1s1∆2s2.

Changing the order of integration in (3.7) and renaming the variables it is sufficient
to prove

1+

t1
∫

σ1(s1)

t2
∫

σ2(s2)

a(ξ1, ξ2)V (ξ1, ξ2, σ1(s1), σ2(s2))∆1ξ1∆2ξ2 ≤ V (t1, t2, σ1(s1), σ2(s2)).

This can be obtained integrating (3.2) from σ1(s1) to t1 and than from σ2(s2) to
t2. �

Theorem 3.3. If the conditions of Theorem 3.2 are satisfied, the estimation of the
Theorem 3.2 is better than the estimation from Theorem 1.1.

Proof. Integrating inequality (3.1) with respect to s1 and s2 on the rectangle
[a1, t1)T1 × [a2, t2)T2 we deduce

∫ t1

a1

∫ t2

a2

a(s1, s2)V (t1, t2, σ1(s1), σ2(s2))∆1s1∆2s2 ≤

≤

∫ t1

a1

∫ t2

a2

∂2V

∆1s1∆2s2
(t1, t2, s1, s2)∆1s1∆2s2 =

= V (t1, t2, t1, t2)− V (t1, t2, a1, t2)− V (t1, t2, t1, a2) + V (t1, t2, a1, a2).
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But V (t1, t2, t1, t2) = V (t1, t2, a1, t2) = V (t1, t2, t1, a2) = 1, so we obtain

(3.9)

∫ t1

a1

∫ t2

a2

a(s1, s2)V (t1, t2, σ1(s1), σ2(s2))∆1s1∆2s2 ≤ V (t1, t2, a1, a2)− 1.

The function w is nonnegative and nondecreasing in both variables, hence we have

w(t1, t2) +

t1
∫

a1

t2
∫

a2

a(s1, s2)w(s1, s2)e∫ t2
σ2(s2)

a(t1,η)∆2η
(t1, σ1(s1))∆1s1∆2s2 ≤

w(t1, t2)



1 +

t1
∫

a1

t2
∫

a2

a(s1, s2)e∫ t2
σ2(s2)

a(t1,η)∆2η
(t1, σ1(s1))∆1s1∆2s2



 ≤

≤ w(t1, t2)V (t1, t2, a1, a2).

This inequality shows that the estimation in Theorem 3.2 is better than the esti-
mation from Theorem 1.1. �

Lemma 3.4. For the function W : E → R, defined by

W (t1, t2, s1, s2) = e∫ t2
s2

a(t1,t2)g(t1,t2,t1,η)∆2η
(t1, s1),

where

E = {(t1, t2, s1, s2) ∈ (T1 × T2)
2|a1 ≤ s1 < t1, a2 ≤ s2 < t2}

we have

(3.10) a(t1, t2)g(t1, t2, s1, s2)W (t1, t2, σ1(s1), σ2(s2)) ≤
∂2W

∆1s1∆2s2
(t1, t2, s1, s2)

Remark 3.5. The proof of the Lemma 3.4 is similar to the proof of the Lemma 3.1.

Theorem 3.6. Let u(t1, t2), w(t1, t2), a(t1, t2) ∈ C(D,R+
0 ), with w(t1, t2) and

a(t1, t2) nondecreasing in each of the variables and g(t1, t2, s1, s2) ∈ C(S,R+
0 ),

where S = {(t1, t2, s1, s2) ∈ D × D : a1 ≤ s1 ≤ t1, a2 ≤ s2 ≤ t2} and g is
nondecreasing in the first two variables. If u satisfies the condition

(3.11) u(t1, t2) ≤ w(t1, t2) + a(t1, t2)

∫ t1

a1

∫ t2

a2

g(t1, t2, s1, s2)u(s1, s2)∆1s1∆2s2,

for (t1, t2) ∈ D, then

u(t1, t2) ≤w(t1, t2)+

a(t1, t2)

t1
∫

a1

t2
∫

a2

g(t1, t2, s1, s2)w(s1, s2)W (t1, t2, σ1(s1), σ2(s2))∆1s1∆2s2,(3.12)

for (t1, t2) ∈ D, where σ1 and σ2 are the jump operators on T1 respectively T2.

Proof. We apply the same technique as in [11]. We consider that t∗1 and t∗2 are fixed
and we consider the operator A∗ : C(D) → C(D) defined by
(3.13)

A∗(u)(t1, t2) = w(t1, t2) + a(t∗1, t
∗

2)

∫ t1

a1

∫ t2

a2

g(t∗1, t
∗

2, s1, s2)u(s1, s2)∆1s1∆2s2.
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It is clear that if u satisfies the conditions of theorem 3.6, then u(t1, t2) ≤ A∗(u)(t1, t2),
for t ≤ t∗1 and t2 ≤ t∗2. t

∗

1, t
∗

2 beeing fixed, theorem 3.2 implies

(3.14) u(t1, t2) ≤ w(t1, t2)+

+

t1
∫

a1

t2
∫

a2

a(t∗1, t
∗

2)g(t
∗

1, t
∗

2, s1, s2)w(s1, s2)H(s1, s2, t1, t2, t
∗

1, t
∗

2)∆1s1∆2s2,

where

H(s1, s2, t1, t2, t
∗

1, t
∗

2) = e∫ t2
σ2(s2)

a(t∗1 ,t
∗

2)g(t
∗

1 ,t
∗

2,t1,η)∆2η
(t1, σ1(s1))

This inequality is valid for t1 = t∗1 and t2 = t∗2 and t∗1, t
∗

2 are arbitrary, so we obtain
(3.12). �

Theorem 3.7. If the conditions of Theorem 3.6 are satisfied, the estimation of the
Theorem 3.6 is better than the estimation from Theorem 1.2.

Proof. Integrating inequality (3.10) from a1 to t1 and from a2 to t2 with respect to
s1 and s2 on the rectangle [a1, t1)T1 × [a2, t2)T2 we have

∫ t1

a1

∫ t2

a2

a(t1, t2)g(t1, t2, s1, s2)W (t1, t2, σ1(s1), σ2(s2))∆1s1∆2s2 ≤

≤

∫ t1

a1

∫ t2

a2

∂2W

∆1s1∆2s2
(t1, t2, s1, s2)∆1s1∆2s2 =

= W (t1, t2, t1, t2)−W (t1, t2, a1, t2)−W (t1, t2, t1, a2) +W (t1, t2, a1, a2).

But W (t1, t2, t1, t2) = W (t1, t2, a1, t2) = W (t1, t2, t1, a2) = 1, so we obtain

(3.15) a(t1, t2)

∫ t1

a1

∫ t2

a2

g(t1, t2, s1, s2)W (t1, t2, σ1(s1), σ2(s2))∆1s1∆2s2 ≤

≤ W (t1, t2, a1, a2)− 1.

The function w is nonnegative and nondecreasing in both variables, hence we have

w(t1, t2)+a(t1, t2)

t1
∫

a1

t2
∫

a2

g(t1, t2, s1, s2)w(s1, s2)W (t1, t2, σ1(s1), σ2(s2))∆1s1∆2s2 ≤

w(t1, t2)



1 + a(t1, t2)

t1
∫

a1

t2
∫

a2

g(t1, t2, s1, s2)W (t1, t2, σ1(s1), σ2(s2))∆1s1∆2s2



 ≤

≤ w(t1, t2)W (t1, t2, a1, a2).

This inequality shows that the estimation in Theorem 3.6 is better than the esti-
mation from Theorem 1.2. �
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3.2. Nonlinear inequalities. In this subsection we give improved estimations to
the recently proved nonlinear integral inequalities in ([11]) combining the method
from ([11]) with theorem 3.2 and 3.6. First we recall the nonlinear integral inequa-
lities from [11]:

Theorem 3.8. (Theorem 3.1 in [11]) Let u(t1, t2), w(t1, t2), a(t1, t2) ∈ C(D,R+
0 )

with w(t1, t2) nondecreasing in each of its variables. If p and q are two positive real
numbers such that p ≥ q and if

(3.16) up(t1, t2) ≤ w(t1, t2) +

∫ t1

a1

∫ t2

a2

a(s1, s2)u
q(s1, s2)∆1s1∆2s2

for (t1, t2) ∈ D, then

(3.17) u(t1, t2) ≤ w
1
p (t1, t2)

[

e∫
t2
a2

a(t1,s2)w
q

p
−1

(t1,s2)∆2s2
(t1, a1)

]
1
p

, (t1, t2) ∈ D.

Theorem 3.9. (Theorem 3.2 in [11]) Let u(t1, t2), w(t1, t2), a(t1, t2) ∈ C(D,R+
0 ),

with w(t1, t2) and a(t1, t2) nondecreasing in each of the variables and g(t1, t2, s1, s2) ∈
C(S,R+

0 ), where S = {(t1, t2, s1, s2) ∈ D ×D : a1 ≤ s1 ≤ t1, a2 ≤ s2 ≤ t2} and g
is nondecreasing in each of its variables. If p and q are two positive real numbers
such that p ≥ q and is u satisfies the condition

(3.18) up(t1, t2) ≤ w(t1, t2) + a(t1, t2)

∫ t1

a1

∫ t2

a2

g(t1, t2, s1, s2)u
q(s1, s2)∆1s1∆2s2,

for (t1, t2) ∈ D, then
(3.19)

u(t1, t2) ≤ w
1
p (t1, t2)

[

e∫
t2
a2

a(t1,t2)w
q

p
−1

(t1,s2)g(t1,t2,t1,s2)∆2s2
(t1, a1)

]
1
p

, ∀(t1, t2) ∈ D.

In what follows we prove the following improvements of these to theorems:

Theorem 3.10. Let u(t1, t2), w(t1, t2), a(t1, t2) ∈ C(D,R+
0 ) with w(t1, t2) nonde-

creasing in each of its variables. If p and q are two positive real numbers such that
p ≥ q and if

(3.20) up(t1, t2) ≤ w(t1, t2) +

∫ t1

a1

∫ t2

a2

a(s1, s2)u
q(s1, s2)∆1s1∆2s2

for (t1, t2) ∈ D, then

(3.21) u(t1, t2) ≤

[

w(t1, t2) + w(t1, t2)

∫ t1

a1

∫ t2

a2

H(t1, t2, s1, s2)∆1s1∆2s2

]

1
p

,

where

H(t1, t2, s1, s2) = a(s1, s2)w
q

p
−1(s1, s2)e∫ t2

σ(s2)
a(t1,η)w

q

p
−1

(t1,η)∆2η
(t1, σ1(s1)),

(t1, t2) ∈ D.

Proof. Suppose w(t1, t2) > 0, (t1, t2) ∈ D. We denote up by u. If u satisfies the
conditions of the previous theorem, due to the monotonicity of w we obtain

u(t1, t2)

w(t1, t2)
≤ 1 +

∫ t1

a1

∫ t2

a2

a(s1, s2)

w(s1, s2)
u

q

p (s1, s2)∆1s1∆2s2,
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hence for the function v defined by the right hand side of the previous inequality
we have

∂2v

∆1t1∆2t2
=

a(t1, t2)

w(t1, t2)
u

q

p (t1, t2) ≤ a(t1, t2)w
q

p
−1(t1, t2)v(t1, t2).

Integrating both sides we deduce that the function v satisfies the following inequal-
ity:

v(t1, t2) ≤ 1 +

∫ t1

a1

∫ t2

a2

a(s1, s2)w
q

p
−1(s1, s2)v(s1, s2)∆1s1∆2s2.

Aplying theorem 3.2 for v and using u(t1, t2) ≤ (w(t1, t2)v(t1, t2))
1
p we obtain

(3.21). �

Remark 3.11. If w ≥ 0, we can replace w with wε = w+ε and then consider ε → 0.

Remark 3.12. Due to Theorem 3.3 the estimation in Theorem 3.10 is better than
the estimation in Theorem 3.8.

Using the same argument as in the previous theorem we obtain the following
result:

Theorem 3.13. Let u(t1, t2), w(t1, t2), a(t1, t2) ∈ C(D,R+
0 ), with w(t1, t2) and

a(t1, t2) nondecreasing in each of the variables and g(t1, t2, s1, s2) ∈ C(S,R+
0 ),

where S = {(t1, t2, s1, s2) ∈ D × D : a1 ≤ s1 ≤ t1, a2 ≤ s2 ≤ t2} and g is
nondecreasing in the first two variables. If p and q are two positive real numbers
such that p ≥ q and u satisfies the condition

(3.22) up(t1, t2) ≤ w(t1, t2) + a(t1, t2)

∫ t1

a1

∫ t2

a2

g(t1, t2, s1, s2)u
q(s1, s2)∆1s1∆2s2,

for (t1, t2) ∈ D, then

(3.23)

u(t1, t2) ≤ w
1
p (t1, t2)

[

1 + a(t1, t2)

∫ t1

a1

∫ t2

a2

g(t1, t2, s1, s2)H(t1, t2, s1, s2)∆1s1∆2s2

]

1
p

,

where

H(t1, t2, s1, s2) = w
q

p
−1(s1, s2)e∫ t2

σ(s2)
a(t1,η)g(t1,t2,t1,η)w

q

p
−1

(t1,η)∆2η
(t1, σ1(s1)),

(t1, t2) ∈ D.

Remark 3.14. Due to Theorem 3.7 the estimation of the Theorem 3.13 is better
than the estimation from Theorem 3.9.

Remark 3.15. Theorem 3.10 and Theorem 3.13 generalize and extend to time scales
Theorem 2.1, Theorem 2.2 and Theorem 2.3. from [10].

3.3. Applications. What it follows we present some applications of our results
form the Theorem 3.2.

Theorem 3.16. Let us consider the the following partial delta dynamic equation

(3.24)
∂2u(t1, t2)

∆2t2∆1t1
= F (t1, t2, u(t1, t2))

on the our domain D, equipped with the initial conditions
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(3.25) u(t1, a2) = g1(t1), u(a1, t2) = g2(t2), ∀t1 ∈ T̃1, t2 ∈ T̃2

and we assume, that F ∈ C(D × R
+
0 ,R

+
0 ), g1 ∈ C(T̃1,R

+
0 ), g2 ∈ C(T̃2,R

+
0 ) and g1

and g2 are nondecreasing.
Now if we assume, that F on its domain satisfies the

(3.26) F (t1, t2, u) ≤ f(t1, t2)u, ∀(t1, t2) ∈ D, u ∈ C(D,R+
0 )

for the given function f ∈ C(D,R+
0 ) with the nondecreasing property on both of its

variables.
If u is the solution of the initial value problem 3.24-3.25, then u satisfies the

u(t1, t2) ≤g1(t1) + g2(t2)+

+

t1
∫

a1

t2
∫

a2

f(s1, s2) (g1(s1) + g2(s2)) e∫ t2
σ2(s2)

f(t1,η)∆2η
(t1, σ1(s1))∆1s1∆2s2

inequality.

Proof. Let u(t1, t2) be the solution of the initial value problem 3.24-3.25. Then it
satisfies the equation

u(t1, t2) = g1(t1) + g2(t2) +

∫ t1

a1

∫ t2

a2

F (s1, s2, u(s1, s2))∆1s1∆2s2.

From 3.26 we have

u(t1, t2) ≤ g1(t1) + g2(t2) +

∫ t1

a1

∫ t2

a2

f(s1, s2)u(s1, s2)∆1s1∆2s2.

This inequality satisfies the requirements of the Theorem 3.2, so we have the
following estimation with w(t1, t2) := g1(t1) + g2(t2) and a(t1, t2) := f(t1, t2)
∀(t1, t2) ∈ D :

u(t1, t2) ≤g1(t1) + g2(t2)+

+

t1
∫

a1

t2
∫

a2

f(s1, s2) (g1(s1) + g2(s2)) e∫ t2
σ2(s2)

f(t1,η)∆2η
(t1, σ1(s1))∆1s1∆2s2.

So we have required inequality. �

Remark 3.17. If we have some other type of initial value problem instead of 3.24-
3.25, for example

(3.27)
∂2up(t1, t2)

∆2t2∆1t1
= F (t1, t2, u(t1, t2))

on the our domain D, equipped with the initial conditions

(3.28) up(t1, a2) = g1(t1), up(a1, t2) = g2(t2), ∀t1 ∈ T̃1, t2 ∈ T̃2

and we assume the same properties for F, g1, g2, and also

(3.29) F (t1, t2, u) ≤ f(t1, t2)u
q, ∀(t1, t2) ∈ D, u ∈ C(D,R+

0 ),
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for the arbitrary positive real numbers p and q with p ≥ q, we could have similar
estimate for the solution u of the initial value problem 3.27-3.28, using our result
form Theorem 3.10.

Remark 3.18. Due to Theorem 3.3 we have, that our estimations for solution of the
problem 3.24-3.25 respective 3.27-3.28, are better as the estimation from [11].

Now we give two concrete examples to the initial value problem 3.24-3.25.

Example 3.19. Let be our time scales T1 := R and T2 = R, what means, that
D = [0,∞) × [0,∞) and the problem 3.24-3.25 is considered as a real continuous
initial value problem.

Now let be F (t1, t2, u(t1, t2)) := sin(t1t2u(t1, t2))u(t1, t2) on D × R
+
0 and the

initial conditions: u(t1, 0) = g1(t1) := 0, ∀t1 ∈ [0,∞) and u(0, t2) = g2(t2) :=
1, ∀t2 ∈ [0,∞).

It is clear, that F (t1, t2, u) ≤ u (f(t1, t2) ≡ 1) on the whole of its domain, and
all of the conditions from Theorem 3.16 are satisfied. So applying this theorem we
have on the domain D:

u(t1, t2) ≤1 +

∫ t1

0

∫ t2

0

exp

(∫ t1

s1

∫ t2

s2

1dηdξ

)

ds2ds1

=1 +

∫ t1

0

∫ t2

0

exp ((t1 − s1)(t2 − s2)) ds2ds1

On the other hand, if we use the estimate from Theorem 1.1, we have

u(t1, t2) ≤ exp(t1t2).

If we compare these two estimations, we can see, that the difference between
them increases exponentially. As the following table shows, we have calculates
numerically the values of

h1(t1, t2) := 1 +

∫ t1

0

∫ t2

0

exp ((t1 − s1)(t2 − s2)) ds2ds1,

and
h2(t1, t2) := exp(t1t2)

and also the difference h2(t1, t2)− h1(t1, t2) on a grid with node points

0 = x0 < x1 < · · · < xn−1 < xn = 4,

0 = y0 < y1 < · · · < yn−1 < yn = 4,

where ∆x = ∆y = 0.5.
The values of h2(t1, t2)− h1(t1, t2) are
t1/t2 0 0.5 1 1.5 2 2.5 3 3.5 4

0 0 0 0 0 0 0 0 0 0
0.5 0 0.01749 0.07857 0.1992 0.40038 0.70965 1.1631 1.8078 2.7052
1 0 0.07857 0.40038 1.1631 2.7052 5.6022 10.828 20.02 35.931
1.5 0 0.1992 1.1631 3.9353 10.828 26.903 63.165 143.4 318.81
2 0 0.40038 2.7052 10.828 35.931 109.41 318.81 906.65 2542.2
2.5 0 0.70965 5.6022 26.903 109.41 414.74 1520.2 5476.4 19536
3 0 1.1631 10.828 63.165 318.81 1520.2 7067 32434 1.478e+005
3.5 0 1.8078 20.02 143.4 906.65 5476.4 32434 1.9021e+005 1.1094e+006
4 0 2.7052 35.931 318.81 2542.2 19536 1.478e+005 1.1094e+006 8.2906e+006
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From these numerical results on this initial value problem it can see, that the
estimations from Theorem 3.2 are much sharp as in the Theorem 1.1.

Example 3.20. Let be the time scales T1 := Z and T2 = Z, what means, that
D = N0 × N0 and the problem 3.24-3.25 is considered as a discrete initial value
problem:

u(m,n) = g1(m) + g2(n) +

m−1
∑

s=0

n−1
∑

t=0

F (s, t, u(s, t)).

Now let be F (m,n, u(m,n)) := u(m,n) on D × R
+
0 and the initial conditions:

u(m, 0) = g1(m) := 0, ∀m ∈ N0 and u(0, n) = g2(n) := 1, ∀n ∈ N0.
It is clear, that F (m,n, u) ≤ u (f(m,n) ≡ 1) on the whole of its domain, and

all of the conditions from Theorem 3.16 are satisfied. So applying this theorem we
have on the domain D:

u(m,n) ≤1 +

m−1
∑

s=0

n−1
∑

t=0





n−1
∏

η=t



1 +

m−1
∑

ξ=s

1







 = 1 +

m−1
∑

s=0

n−1
∑

t=0

[

n−1
∏

η=t

(1 +m− s)

]

=1 +

m−1
∑

s=0

n−1
∑

t=0

[

(1 +m− s)
n−t

]

= 1 +

m−1
∑

s=0

[

(1 +m− s)
(1 +m− s)n − 1

m− s

]

On the other hand dealing with the Theorem 1.1 we have the following estimation
in this case:

u(m,n) ≤

n−1
∏

t=0

(1 +m) = (1 +m)n
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